Ancient Indian Mathematics. Part Two.

Pingala

Among the scholars of the post-Vedic period who contributed to mathematics, the most notable is Pingala (piṅgalá) (fl. 300–200 BCE),a musical theorist who authored the Chhandas Shastra (chandaḥ-śāstra, also Chhandas Sutra chhandaḥ-sūtra), a Sanskrit treatise on prosody. There is evidence that in his work on the enumeration of syllabic combinations, Pingala stumbled upon both the Pascal triangle and Binomial coefficients, although he did not have knowledge of the Binomial theorem itself. Pingala's work also contains the basic ideas of Fibonacci numbers (called maatraameru). Although the Chandah sutra hasn't survived in its entirety, a 10th-century commentary on it by Halāyudha has. Halāyudha, who refers to the Pascal triangle as Meru-prastāra (literally "the staircase to Mount Meru"), has this to say:

Draw a square. Beginning at half the square, draw two other similar squares below it; below these two, three other squares, and so on. The marking should be started by putting 1 in the first square. Put 1 in each of the two squares of the second line. In the third line put 1 in the two squares at the ends and, in the middle square, the sum of the digits in the two squares lying above it. In the fourth line put 1 in the two squares at the ends. In the middle ones put the sum of the digits in the two squares above each. Proceed in this way. Of these lines, the second gives the combinations with one syllable, the third the combinations with two syllables, ...

The text also indicates that Pingala was aware of the combinatorial identity:

{n \choose 0} + {n \choose 1} + {n \choose 2} + \cdots + {n \choose n-1} + {n \choose n} = 2^n

Katyayana

Katyayana (c. 3rd century BCE) is notable for being the last of the Vedic mathematicians. He wrote the Katyayana Sulba Sutra, which presented much geometry, including the general Pythagorean theorem and a computation of the square root of 2 correct to five decimal places.

Jain Mathematics (400 BCE – 200 CE)

Although Jainism as a religion and philosophy predates its most famous exponent, the great Mahavira (6th century BCE), most Jain texts on mathematical topics were composed after the 6th century BCE. Jain mathematicians are important historically as crucial links between the mathematics of the Vedic period and that of the "Classical period."

A significant historical contribution of Jain mathematicians lay in their freeing Indian mathematics from its religious and ritualistic constraints. In particular, their fascination with the enumeration of very large numbers and infinities led them to classify numbers into three classes: enumerable, innumerable and infinite. Not content with a simple notion of infinity, they went on to define five different types of infinity: the infinite in one direction, the infinite in two directions, the infinite in area, the infinite everywhere, and the infinite perpetually. In addition, Jain mathematicians devised notations for simple powers (and exponents) of numbers like squares and cubes, which enabled them to define simple algebraic equations (beejganita samikaran). Jain mathematicians were apparently also the first to use the word shunya (literally void in Sanskrit) to refer to zero. More than a millennium later, their appellation became the English word "zero" after a tortuous journey of translations and transliterations from India to Europe.

In addition to Surya Prajnapti, important Jain works on mathematics included the Vaishali Ganit (c. 3rd century BCE); the Sthananga Sutra (fl. 300 BCE – 200 CE); the Anoyogdwar Sutra (fl. 200 BCE – 100 CE); and the Satkhandagama (c. 2nd century CE). Important Jain mathematicians included Bhadrabahu (d. 298 BCE), the author of two astronomical works, the Bhadrabahavi-Samhita and a commentary on the Surya Prajinapti; Yativrisham Acharya (c. 176 BCE), who authored a mathematical text called Tiloyapannati; and Umasvati (c. 150 BCE), who, although better known for his influential writings on Jain philosophy and metaphysics, composed a mathematical work called Tattwarthadhigama-Sutra Bhashya.

Oral Tradition

Mathematicians of ancient and early medieval India were almost all Sanskrit pandits (paṇḍita "learned man"), who were trained in Sanskrit language and literature, and possessed "a common stock of knowledge in grammar (vyākaraṇa), exegesis (mīmāṃsā) and logic (nyāya)." Memorisation of "what is heard" (śruti in Sanskrit) through recitation played a major role in the transmission of sacred texts in ancient India. Memorisation and recitation was also used to transmit philosophical and literary works, as well as treatises on ritual and grammar. Modern scholars of ancient India have noted the "truly remarkable achievements of the Indian pandits who have preserved enormously bulky texts orally for millennia."

Styles of memorization

Prodigous energy was expended by ancient Indian culture in ensuring that these texts were transmitted from generation to generation with inordinate fidelity. For example, memorisation of the sacred Vedas included up to eleven forms of recitation of the same text. The texts were subsequently "proof-read" by comparing the different recited versions. Forms of recitation included the jaṭā-pāṭha (literally "mesh recitation") in which every two adjacent words in the text were first recited in their original order, then repeated in the reverse order, and finally repeated again in the original order. The recitation thus proceeded as:

word1word2, word2word1, word1word2; word2word3, word3word2, word2word3; ...

In another form of recitation, dhvaja-pāṭha (literally "flag recitation") a sequence of N words were recited (and memorised) by pairing the first two and last two words and then proceeding as:

word1word2, wordN − 1wordN; word2word3, wordN − 3wordN − 2; ..; wordN − 1wordN, word1word2;

The most complex form of recitation, ghana-pāṭha (literally "dense recitation"), according to (Filliozat 2004, p. 139), took the form:

word1word2, word2word1, word1word2word3, word3word2word1, word1word2word3; word2word3, word3word2, word2word3word4, word4word3word2, word2word3word4; ...

That these methods have been effective, is testified to by the preservation of the most ancient Indian religious text, the Ṛgveda (ca. 1500 BCE), as a single text, without any variant readings. Similar methods were used for memorising mathematical texts, whose transmission remained exclusively oral until the end of the Vedic period (ca. 500 BCE).

The Sutra genre

Mathematical activity in ancient India began as a part of a "methodological reflexion" on the sacred Vedas, which took the form of works called Vedāṇgas, or, "Ancillaries of the Veda" (7th–4th century BCE). The need to conserve the sound of sacred text by use of śikṣā (phonetics) and chhandas (metrics); to conserve its meaning by use of vyākaraṇa (grammar) and nirukta (etymology); and to correctly perform the rites at the correct time by the use of kalpa (ritual) and jyotiṣa (astrology), gave rise to the six disciplines of the Vedāṇgas. Mathematics arose as a part of the last two disciplines, ritual and astronomy (which also included astrology). Since the Vedāṇgas immediately preceded the use of writing in ancient India, they formed the last of the exclusively oral literature. They were expressed in a highly compressed mnemonic form, the sūtra (literally, "thread"):

The knowers of the sūtra know it as having few phonemes, being devoid of ambiguity, containing the essence, facing everything, being without pause and unobjectionable.

Extreme brevity was achieved through multiple means, which included using ellipsis "beyond the tolerance of natural language," using technical names instead of longer descriptive names, abridging lists by only mentioning the first and last entries, and using markers and variables. The sūtras create the impression that communication through the text was "only a part of the whole instruction. The rest of the instruction must have been transmitted by the so-called Guru-shishya paramparai, 'uninterrupted succession from teacher (guru) to the student (śisya),' and it was not open to the general public" and perhaps even kept secret. The brevity achieved in a sūtra is demonstrated in the following example from the Baudhāyana Śulba Sūtra (700 BCE).

The domestic fire-altar in the Vedic period was required by ritual to have a square base and be constituted of five layers of bricks with 21 bricks in each layer. One method of constructing the altar was to divide one side of the square into three equal parts using a cord or rope, to next divide the transverse (or perpendicular) side into seven equal parts, and thereby sub-divide the square into 21 congruent rectangles. The bricks were then designed to be of the shape of the constituent rectangle and the layer was created. To form the next layer, the same formula was used, but the bricks were arranged transversely. The process was then repeated three more times (with alternating directions) in order to complete the construction. In the Baudhāyana Śulba Sūtra, this procedure is described in the following words:

II.64. After dividing the quadri-lateral in seven, one divides the transverse [cord] in three.

II.65. In another layer one places the [bricks] North-pointing.

According to (Filliozat 2004, p. 144), the officiant constructing the altar has only a few tools and materials at his disposal: a cord (Sanskrit, rajju, f.), two pegs (Sanskrit, śanku, m.), and clay to make the bricks (Sanskrit, iṣṭakā, f.). Concision is achieved in the sūtra, by not explicitly mentioning what the adjective "transverse" qualifies; however, from the feminine form of the (Sanskrit) adjective used, it is easily inferred to qualify "cord." Similarly, in the second stanza, "bricks" are not explicitly mentioned, but inferred again by the feminine plural form of "North-pointing." Finally, the first stanza, never explicitly says that the first layer of bricks are oriented in the East-West direction, but that too is implied by the explicit mention of "North-pointing" in the second stanza; for, if the orientation was meant to be the same in the two layers, it would either not be mentioned at all or be only mentioned in the first stanza. All these inferences are made by the officiant as he recalls the formula from his memory.

The written tradition: prose commentary.

With the increasing complexity of mathematics and other exact sciences, both writing and computation were required. Consequently, many mathematical works began to be written down in manuscripts that were then copied and re-copied from generation to generation.

India today is estimated to have about thirty million manuscripts, the largest body of handwritten reading material anywhere in the world. The literate culture of Indian science goes back to at least the fifth century B.C. ... as is shown by the elements of Mesopotamian omen literature and astronomy that entered India at that time and (were) definitely not ... preserved orally.

The earliest mathematical prose commentary was that on the work, Āryabhaṭīya (written 499 CE), a work on astronomy and mathematics. The mathematical portion of the Āryabhaṭīya was composed of 33 sūtras (in verse form) consisting of mathematical statements or rules, but without any proofs. However, according to (Hayashi 2003, p. 123), "this does not necessarily mean that their authors did not prove them. It was probably a matter of style of exposition." From the time of Bhaskara I (600 CE onwards), prose commentaries increasingly began to include some derivations (upapatti). Bhaskara I's commentary on the Āryabhaṭīya, had the following structure:

Rule ('sūtra') in verse by Āryabhaṭa

Commentary by Bhāskara I, consisting of:

Elucidation of rule (derivations were still rare then, but became more common later)

Example (uddeśaka) usually in verse.

Setting (nyāsa/sthāpanā) of the numerical data.

Working (karana) of the solution.

Verification (pratyayakaraṇa, literally "to make conviction") of the answer. These became rare by the 13th century, derivations or proofs being favoured by then.

Typically, for any mathematical topic, students in ancient India first memorized the sūtras, which, as explained earlier, were "deliberately inadequate" in explanatory details (in order to pithily convey the bare-bone mathematical rules). The students then worked through the topics of the prose commentary by writing (and drawing diagrams) on chalk- and dust-boards (i.e. boards covered with dust). The latter activity, a staple of mathematical work, was to later prompt mathematician-astronomer, Brahmagupta (fl. 7th century CE), to characterize astronomical computations as "dust work" (Sanskrit: dhulikarman).

Pingala

Among the scholars of the post-Vedic period who contributed to mathematics, the most notable is Pingala (piṅgalá) (fl. 300–200 BCE),a musical theorist who authored the Chhandas Shastra (chandaḥ-śāstra, also Chhandas Sutra chhandaḥ-sūtra), a Sanskrit treatise on prosody. There is evidence that in his work on the enumeration of syllabic combinations, Pingala stumbled upon both the Pascal triangle and Binomial coefficients, although he did not have knowledge of the Binomial theorem itself. Pingala's work also contains the basic ideas of Fibonacci numbers (called maatraameru). Although the Chandah sutra hasn't survived in its entirety, a 10th-century commentary on it by Halāyudha has. Halāyudha, who refers to the Pascal triangle as Meru-prastāra (literally "the staircase to Mount Meru"), has this to say:

Draw a square. Beginning at half the square, draw two other similar squares below it; below these two, three other squares, and so on. The marking should be started by putting 1 in the first square. Put 1 in each of the two squares of the second line. In the third line put 1 in the two squares at the ends and, in the middle square, the sum of the digits in the two squares lying above it. In the fourth line put 1 in the two squares at the ends. In the middle ones put the sum of the digits in the two squares above each. Proceed in this way. Of these lines, the second gives the combinations with one syllable, the third the combinations with two syllables, ...

The text also indicates that Pingala was aware of the combinatorial identity:

{n \choose 0} + {n \choose 1} + {n \choose 2} + \cdots + {n \choose n-1} + {n \choose n} = 2^n

Katyayana

Katyayana (c. 3rd century BCE) is notable for being the last of the Vedic mathematicians. He wrote the Katyayana Sulba Sutra, which presented much geometry, including the general Pythagorean theorem and a computation of the square root of 2 correct to five decimal places.

Jain Mathematics (400 BCE – 200 CE)

Although Jainism as a religion and philosophy predates its most famous exponent, the great Mahavira (6th century BCE), most Jain texts on mathematical topics were composed after the 6th century BCE. Jain mathematicians are important historically as crucial links between the mathematics of the Vedic period and that of the "Classical period."

A significant historical contribution of Jain mathematicians lay in their freeing Indian mathematics from its religious and ritualistic constraints. In particular, their fascination with the enumeration of very large numbers and infinities led them to classify numbers into three classes: enumerable, innumerable and infinite. Not content with a simple notion of infinity, they went on to define five different types of infinity: the infinite in one direction, the infinite in two directions, the infinite in area, the infinite everywhere, and the infinite perpetually. In addition, Jain mathematicians devised notations for simple powers (and exponents) of numbers like squares and cubes, which enabled them to define simple algebraic equations (beejganita samikaran). Jain mathematicians were apparently also the first to use the word shunya (literally void in Sanskrit) to refer to zero. More than a millennium later, their appellation became the English word "zero" after a tortuous journey of translations and transliterations from India to Europe.

In addition to Surya Prajnapti, important Jain works on mathematics included the Vaishali Ganit (c. 3rd century BCE); the Sthananga Sutra (fl. 300 BCE – 200 CE); the Anoyogdwar Sutra (fl. 200 BCE – 100 CE); and the Satkhandagama (c. 2nd century CE). Important Jain mathematicians included Bhadrabahu (d. 298 BCE), the author of two astronomical works, the Bhadrabahavi-Samhita and a commentary on the Surya Prajinapti; Yativrisham Acharya (c. 176 BCE), who authored a mathematical text called Tiloyapannati; and Umasvati (c. 150 BCE), who, although better known for his influential writings on Jain philosophy and metaphysics, composed a mathematical work called Tattwarthadhigama-Sutra Bhashya.

Oral Tradition

Mathematicians of ancient and early medieval India were almost all Sanskrit pandits (paṇḍita "learned man"), who were trained in Sanskrit language and literature, and possessed "a common stock of knowledge in grammar (vyākaraṇa), exegesis (mīmāṃsā) and logic (nyāya)." Memorisation of "what is heard" (śruti in Sanskrit) through recitation played a major role in the transmission of sacred texts in ancient India. Memorisation and recitation was also used to transmit philosophical and literary works, as well as treatises on ritual and grammar. Modern scholars of ancient India have noted the "truly remarkable achievements of the Indian pandits who have preserved enormously bulky texts orally for millennia."

Styles of memorization

Prodigous energy was expended by ancient Indian culture in ensuring that these texts were transmitted from generation to generation with inordinate fidelity. For example, memorisation of the sacred Vedas included up to eleven forms of recitation of the same text. The texts were subsequently "proof-read" by comparing the different recited versions. Forms of recitation included the jaṭā-pāṭha (literally "mesh recitation") in which every two adjacent words in the text were first recited in their original order, then repeated in the reverse order, and finally repeated again in the original order. The recitation thus proceeded as:

word1word2, word2word1, word1word2; word2word3, word3word2, word2word3; ...

In another form of recitation, dhvaja-pāṭha (literally "flag recitation") a sequence of N words were recited (and memorised) by pairing the first two and last two words and then proceeding as:

word1word2, wordN − 1wordN; word2word3, wordN − 3wordN − 2; ..; wordN − 1wordN, word1word2;

The most complex form of recitation, ghana-pāṭha (literally "dense recitation"), according to (Filliozat 2004, p. 139), took the form:

word1word2, word2word1, word1word2word3, word3word2word1, word1word2word3; word2word3, word3word2, word2word3word4, word4word3word2, word2word3word4; ...

That these methods have been effective, is testified to by the preservation of the most ancient Indian religious text, the Ṛgveda (ca. 1500 BCE), as a single text, without any variant readings. Similar methods were used for memorising mathematical texts, whose transmission remained exclusively oral until the end of the Vedic period (ca. 500 BCE).

The Sutra genre

Mathematical activity in ancient India began as a part of a "methodological reflexion" on the sacred Vedas, which took the form of works called Vedāṇgas, or, "Ancillaries of the Veda" (7th–4th century BCE). The need to conserve the sound of sacred text by use of śikṣā (phonetics) and chhandas (metrics); to conserve its meaning by use of vyākaraṇa (grammar) and nirukta (etymology); and to correctly perform the rites at the correct time by the use of kalpa (ritual) and jyotiṣa (astrology), gave rise to the six disciplines of the Vedāṇgas. Mathematics arose as a part of the last two disciplines, ritual and astronomy (which also included astrology). Since the Vedāṇgas immediately preceded the use of writing in ancient India, they formed the last of the exclusively oral literature. They were expressed in a highly compressed mnemonic form, the sūtra (literally, "thread"):

The knowers of the sūtra know it as having few phonemes, being devoid of ambiguity, containing the essence, facing everything, being without pause and unobjectionable.

Extreme brevity was achieved through multiple means, which included using ellipsis "beyond the tolerance of natural language," using technical names instead of longer descriptive names, abridging lists by only mentioning the first and last entries, and using markers and variables. The sūtras create the impression that communication through the text was "only a part of the whole instruction. The rest of the instruction must have been transmitted by the so-called Guru-shishya paramparai, 'uninterrupted succession from teacher (guru) to the student (śisya),' and it was not open to the general public" and perhaps even kept secret. The brevity achieved in a sūtra is demonstrated in the following example from the Baudhāyana Śulba Sūtra (700 BCE).

The domestic fire-altar in the Vedic period was required by ritual to have a square base and be constituted of five layers of bricks with 21 bricks in each layer. One method of constructing the altar was to divide one side of the square into three equal parts using a cord or rope, to next divide the transverse (or perpendicular) side into seven equal parts, and thereby sub-divide the square into 21 congruent rectangles. The bricks were then designed to be of the shape of the constituent rectangle and the layer was created. To form the next layer, the same formula was used, but the bricks were arranged transversely. The process was then repeated three more times (with alternating directions) in order to complete the construction. In the Baudhāyana Śulba Sūtra, this procedure is described in the following words:

II.64. After dividing the quadri-lateral in seven, one divides the transverse [cord] in three.

II.65. In another layer one places the [bricks] North-pointing.

According to (Filliozat 2004, p. 144), the officiant constructing the altar has only a few tools and materials at his disposal: a cord (Sanskrit, rajju, f.), two pegs (Sanskrit, śanku, m.), and clay to make the bricks (Sanskrit, iṣṭakā, f.). Concision is achieved in the sūtra, by not explicitly mentioning what the adjective "transverse" qualifies; however, from the feminine form of the (Sanskrit) adjective used, it is easily inferred to qualify "cord." Similarly, in the second stanza, "bricks" are not explicitly mentioned, but inferred again by the feminine plural form of "North-pointing." Finally, the first stanza, never explicitly says that the first layer of bricks are oriented in the East-West direction, but that too is implied by the explicit mention of "North-pointing" in the second stanza; for, if the orientation was meant to be the same in the two layers, it would either not be mentioned at all or be only mentioned in the first stanza. All these inferences are made by the officiant as he recalls the formula from his memory.

The written tradition: prose commentary.

With the increasing complexity of mathematics and other exact sciences, both writing and computation were required. Consequently, many mathematical works began to be written down in manuscripts that were then copied and re-copied from generation to generation.

India today is estimated to have about thirty million manuscripts, the largest body of handwritten reading material anywhere in the world. The literate culture of Indian science goes back to at least the fifth century B.C. ... as is shown by the elements of Mesopotamian omen literature and astronomy that entered India at that time and (were) definitely not ... preserved orally.

The earliest mathematical prose commentary was that on the work, Āryabhaṭīya (written 499 CE), a work on astronomy and mathematics. The mathematical portion of the Āryabhaṭīya was composed of 33 sūtras (in verse form) consisting of mathematical statements or rules, but without any proofs. However, according to (Hayashi 2003, p. 123), "this does not necessarily mean that their authors did not prove them. It was probably a matter of style of exposition." From the time of Bhaskara I (600 CE onwards), prose commentaries increasingly began to include some derivations (upapatti). Bhaskara I's commentary on the Āryabhaṭīya, had the following structure:

Rule ('sūtra') in verse by Āryabhaṭa

Commentary by Bhāskara I, consisting of:

Elucidation of rule (derivations were still rare then, but became more common later)

Example (uddeśaka) usually in verse.

Setting (nyāsa/sthāpanā) of the numerical data.

Working (karana) of the solution.

Verification (pratyayakaraṇa, literally "to make conviction") of the answer. These became rare by the 13th century, derivations or proofs being favoured by then.

Typically, for any mathematical topic, students in ancient India first memorized the sūtras, which, as explained earlier, were "deliberately inadequate" in explanatory details (in order to pithily convey the bare-bone mathematical rules). The students then worked through the topics of the prose commentary by writing (and drawing diagrams) on chalk- and dust-boards (i.e. boards covered with dust). The latter activity, a staple of mathematical work, was to later prompt mathematician-astronomer, Brahmagupta (fl. 7th century CE), to characterize astronomical computations as "dust work" (Sanskrit: dhulikarman).